首页 > 导师 > 导师简介 > 正文
导师简介
导师简介

李爱军

2022/03/14 10:55:56 次浏览 分类:导师简介

 

李爱军,男,汉族,1972年1月出生,河南焦作人,博士,美国纽约大学理工学院博士后,现浙江科技学院教授,硕士研究生导师。2010年7月在上海大学获得理学博士学位,研究方向为凸几何分析,所撰写博士论文获得2011年上海市优秀博士论文。现担任美国数学评论评论员。

学术交流情况:

2019年6月8日至6月14日参加了在清华大学举办的第八届华人数学家大会(ICCM),并做45分钟邀请报告。

2015年6月5日至6月8日参加了加拿大Charlottetown的爱德华王子岛大学举办的“2015 CMS Summer Meeting”,并在分会场做报告。

2012年8月至2013年9月美国纽约大学理工学院博士后,导师为Gaoyong Zhang教授。

2012年1月至2月拜访了英国华威大学的Keith Ball教授。

科研项目

1. 浙江省自然基金探索项目:Grassmann流形的等周和逆等周问题研究(LY22A010001), 2022.1-2024.12 主持,在研。

2. 河南省高等学校重点科研项目: 等周和仿射等周相关问题研究(17A110022)2017.1-2018.12 主持, 已结项。

3. 国家自然科学基金(河南人才培养联合基金)Orlicz Minkowski 问题及相关极值理论(U1204102)2013.12015.12  主持, 已结项。

4. 河南理工大学博士基金:现代凸几何分析及应用 2010.82014.9   主持,已结项。

5. 国家自然科学基金:凸体的赋值理论与BusemannPetty型问题(10971128),2010.1-2012.12 参与(第二),已结项。

6. 上海市教育委员会科研创新重点项目:现代凸几何分析及应用(09ZZ94)2009.1-2011.12,参与(第四),已结项。

近期发表的代表性论文:

[28] A.-J. Li and Y.-M. Zhang, Lower dimensional ellipsoids of maximal volume in convex bodies, J. Math. Inequal.  (2021), in press.

[27] A.-J. Li, Z.-X. Cao, and Q. Huang, A matrix form of Grassmannian Ball–Barthe inequality, Linear & Multilinear Algebra, (2021), in press.

[26] A.-J. Li and S.-T. Zhang, Sharp inequalities related to the functional Uj and some applications, Geom. Dedicata 213 (2021), 173–190.

[25] A.-J. Li, D. Xi, and Q. Huang, A Grassmannian Loomis-Whitney inequality and its dual, J. London Math. Soc. 101 (2020), 1219-1249.

[24] Q. Huang and A.-J. Li, The Lp Gagliardo-Nirenberg-Zhang inequality. Adv. Appl. Math. 113 (2020), 21 pp.

[23] A.-J. Li, Q. Huang, and D. Xi, New sine ellipsoids and related volume inequalities, Adv. Math. 353 (2019), 281-311.

[22] Y. Feng, Q. Huang, and A.-J. Li, On the reverse dual Loomis-Whitney inequality, Results in Math. 74 (2019),  Art. 106.

[21] Q. Huang and A.-J. Li, Moment-entropy inequality for isotropic measures, Monatshefte Math. 187 (2018), 95–107.

[20] Q. Huang and A.-J. Li, A characterization of minimal Orlicz–Sobolev norms in the affine class, J. Math. Anal. Appl. 460 (2018), 703–713.

[19] Q. Huang, A.-J. Li and W. Wang, The complex Lp Loomis-Whitney inequality, Math. Inequal. Appl. 21 (2018), 369–383.

[18] A.-J. Li, Q. Huang, and D. Xi, Sections and projections of Lp-zonoids and their polars, J. Geom. Anal. 28 (2018), 427–447.

[17] A.-J. Li, Q. Huang, and D. Xi, Volume inequalities for sections and projections of Wulff shapes and their polars. Adv. Appl. Math. 91 (2017), 76–97.

[16] Q. Huang and A.-J. Li, The functional version of the Ball ineqaulityProc. Amer. Math. Soc. 145 (2017), 3531-3541.

[15] A.-J. Li, D. Xi, and G. Zhang, Volume inequalities of convex bodies from cosine transforms on Grassmann manifolds, Adv. Math. 304 (2017), 494-538.

[14] Q. Huang and A.-J. Li, On the Loomis-Whitney inequality for isotropic measures, Int. Math. Res. Notices 2017 (2017), 1641-1652.

[13] A.-J. Li and Q. Huang, The dual Loomis-Whitney inequality, Bull. London Math. Soc. 48 (2016), 676-690.

[12] A.-J. Li, Y. Lou, and Y. Ji, A Poincaré-type inequality on the Euclidean unit sphere, J. Math. Inequal. 10 (2016), 807–817.

[11] A.-J. Li and Q. Huang, The Lp Loomis-Whitney inequality, Adv. Appl. Math. 75 (2016), 94-115.

[10] Q. Huang and A.-J. LiOptimal Sobolev norms in the affine class, J. Math. Anal. Appl. 436 (2016), 568-585.

[9] A.-J. Li, Isomorphic versions of reverse isoperimetric inequalities, Geom. Dedicata 179 (2015), 139-151.

[8] A.-J. Li, The generalization of Minkowski problems for polytopes, Geom. Dedicata 168 (2014),245-264.

[7] A.-J. Li and G. Leng, Extremal problems related to Gauss-John position, Acta Math. Sinica Enlish Series 28 (2012), 2527-2534.

[6] A.-J. Li and G. Leng, Mean width inequalities for isotropic measures, Math. Z. 270 (2012), 1089-1110.

[5] A.-J. Li, G. Wang, and G. Leng, An Extended Loomis-Whitney inequality for positive double John bases, Glasg. Math. J. 53 (2011) , 451-462.

[4] A.-J. Li and G. Leng, A new proof of Orlicz Busemann-Petty centroid inequality, Proc. Amer. Math. Soc. 139 (2011), 1473-1481.

[3] A.-J. Li and G. Leng, Brascamp-Lieb inequality for positive double John basis and its reverse , Science in China, Series A, 54 (2011), 399-410.

[2] A.-J. Li and C. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Korean. Math. Soc. 45 (2008), 273-287.

[1] A.-J. Li, J. Yuan, and C. Chen, Monotonicity results for the polygamma functions, Math. Inequal. Appl. 11 (2008), 307-316.

E-mail:liaijun72@163.com

 

 


上一篇:楼琼

下一篇:江红民


版权所有 © 浙江科技大学研究生招生办公室  浙icp备11051284号

地址:浙江省杭州市留和路318号 邮编:310023